Gaussian noise

Results: 191



#Item
31

Robust Optimality of Gaussian Noise Stability Elchanan Mossel∗and Joe Neeman† arXiv:1210.4126v3 [math.PR] 22 FebFebruary 25, 2013

Add to Reading List

Source URL: arxiv.org

Language: English - Date: 2013-02-25 01:39:30
    32

    Gaussian Noise Sensitivity and BosonSampling∗ Gil Kalai† Guy Kindler‡ August 13, 2014

    Add to Reading List

    Source URL: www.ma.huji.ac.il

    Language: English - Date: 2014-08-13 13:44:25
      33

      1 Sparse Superposition Codes are Fast and Reliable at Rates Approaching Capacity with Gaussian Noise Andrew R. Barron, Senior Member, IEEE, and Antony Joseph, Student Member, IEEE For upcoming submission to IEEE Transac

      Add to Reading List

      Source URL: www.stat.yale.edu

      Language: English - Date: 2011-06-10 18:36:46
        34

        ISIT 2010, Austin, Texas, U.S.A., June, 2010 Toward Fast Reliable Communication at Rates Near Capacity with Gaussian Noise Andrew R Barron, Antony Joseph Department of Statistics, Yale University and SumCodes, a

        Add to Reading List

        Source URL: www.stat.yale.edu

        Language: English - Date: 2012-10-24 17:49:25
          35Image denoising / Spatial data analysis / Wavelet / Time series analysis / Estimation theory / Noise reduction / White noise / Statistics / Image processing / Signal processing

          GAUSSIAN NOISE REMOVAL FOR WET CHEMISTRY DATA FROM THE PHOENIX MISSION Y. Mu1, W. Ding1, X. Ren1, E. Oberlin2, S. Kounaves2, 1 Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Blvd., Bost

          Add to Reading List

          Source URL: www.cs.umb.edu

          Language: English - Date: 2014-02-11 12:39:36
          36Statistics / Channel / Feedback / Additive white Gaussian noise / Intersymbol interference / Markov chain / Rate–distortion theory / Forward error correction / Noisy-channel coding theorem / Information theory / Information / Telecommunications engineering

          IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 6, JUNECapacity Region of the Finite-State Multiple-Access Channel With and Without Feedback

          Add to Reading List

          Source URL: www.stanford.edu

          Language: English - Date: 2010-01-15 12:25:06
          37Regression analysis / Machine learning / Causality / Conditionals / Linear regression / Correlation and dependence / Information theory / Supervised learning / Additive white Gaussian noise / Statistics / Econometrics / Communication

          On Causal and Anticausal Learning Bernhard Sch¨olkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang FIRST. LAST @ TUE . MPG . DE Max Planck Institute for Intelligent Systems, Spemannstrasse, 72076 T¨ubing

          Add to Reading List

          Source URL: www.is.tuebingen.mpg.de

          Language: English - Date: 2012-08-03 03:07:37
          38Regression analysis / Machine learning / Causality / Conditionals / Linear regression / Correlation and dependence / Information theory / Supervised learning / Additive white Gaussian noise / Statistics / Econometrics / Communication

          On Causal and Anticausal Learning Bernhard Sch¨olkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang FIRST. LAST @ TUE . MPG . DE Max Planck Institute for Intelligent Systems, Spemannstrasse, 72076 T¨ubing

          Add to Reading List

          Source URL: icml.cc

          Language: English - Date: 2012-06-07 13:20:32
          39Statistical theory / M-estimators / Information theory / Additive white Gaussian noise / Maximum likelihood / Mutual information / Expectation–maximization algorithm / Regression analysis / Log-normal distribution / Statistics / Estimation theory / Econometrics

          On Estimation of Functional Causal Models: Post-Nonlinear Causal Model as an Example Kun Zhang, Zhikun Wang,

          Add to Reading List

          Source URL: www.is.tuebingen.mpg.de

          Language: English - Date: 2014-01-15 07:09:56
          40Information / Data transmission / Electronic engineering / IEEE 802 / MIMO / Software-defined radio / Quadrature amplitude modulation / Additive white Gaussian noise / 4G / Telecommunications engineering / Radio resource management / Information theory

          EFFICIENT ML DETECTION FOR MIMO CHANNELS: ORDERED SPHERE DECODING Karen Su and Ian J. Wassell, Cambridge University Engineering Department Key words to describe the work: Sphere decoding, Maximum Likelihood (ML) detectio

          Add to Reading List

          Source URL: www.cl.cam.ac.uk

          Language: English - Date: 2007-06-29 06:52:50
          UPDATE